AI 혁명의 미래
땅끝
2023-01-15 09:06
916
0
본문
AI 혁명의 미래
도서명 : AI 혁명의 미래
저자/출판사 : 정인성,최홍섭,저자,글,, 이레미디어
쪽수 : 284쪽
출판일 : 2023-01-06
ISBN : 9791191328745
정가 : 18000
머리글 위기인지 기회인지는 지식에 달렸다
| 피할 수 없는 인공지능의 물결
| 두려움을 극복하기 위해서
[Chapter 1] 혁신을 향한 여정: 엔드 투 엔드를 향해
인간이 만드는 인공지능
| 인간이 짠 규칙: 규칙 기반 프로그래밍
| 규칙을 주입받은 인공지능: SVM
인간처럼 배우는 인공지능
| 인간 따라 하기: 엔드 투 엔드와 인공신경망
| 인공지능 겨울: 사람의 뇌를 따라 하는 데서 생기는 어려움
| 돌파구: 겨울 왕국에서 준비하는 봄
| 실리콘밸리에서 다가온 반도체 혁명
| 엔드 투 엔드 인공신경망의 데뷔전: ImageNet 2012
결전: IBM vs Google
| IBM: 인간이 만드는 인공지능
| Google: 인간처럼 배우는 인공지능
엔드 투 엔드의 승리
| 엔드 투 엔드의 승리가 알려 주는 교훈
| 엔드 투 엔드로 인한 세상의 변화
| 기존 방식이 적용 가능한 영역
[Chapter 2] 혁신의 결과: 현재의 인공지능 기술
인식 분야 연구의 완성
생성 분야 연구의 약진
강화학습 기술과 의사결정 분야의 가능성
초거대 언어 모델과 자연어처리
AI로 어디까지 할 수 있는가?
[Chapter 3] 인공지능을 만들고 적용하기
인공지능을 만들 때 꼭 알아야 할 것들
| 인공지능의 구성 요소
| 학습 데이터 만들기
| 데이터 증강
| 범용성과 최적화의 사이, 인공신경망 설계
| 좋은 AI의 두 가지 조건
기업의 성공적인 AI 트랜스포메이션을 위한 가이드
| AI 트랜스포메이션 프로세스와 단계별 체크 리스트
| AI 트랜스포메이션 선순환 구조 만들기
| AI 트랜스포메이션을 위한 조직 세팅
[Chapter 4] 미래 인공지능 기술 트렌드
빠르게 똑똑해지지는 못하는 AI
인공신경망 기술의 새로운 화두
| 보다 더 사람의 뇌처럼: SNN
| 사람의 기억을 어떻게 구현할 것인가: RETRO Transformer
| AGI: 일반 인공지능의 꿈은 이뤄질까?
게임 체인저인가, Nice Try인가? 인공지능 반도체들
| 딥러닝의 마중물: NVIDIA GPU
| 더욱 거대한 스케일로: WSE
| 가속기를 위한 가속기: PiM
| 소형 기기는 누가 하는가: 엣지 가속기
| 휴대 기기 속 인공지능 경쟁: NPU
| 컴퓨터를 넘어서: 뉴로모픽 칩
| 아메바 수준의 단순함: 아날로그형 인공지능 반도체
[Chapter 5] 미래 인공지능 기업
인공지능 개발 능력이 높은 기업
| 과감한 선택을 하는 기업
| 하드웨어 발전의 이해자
| 다양한 학문 분야에 발이 넓은 기업
서비스의 성공 요소를 알고 있는 기업
| 서비스의 부품으로서의 AI
| 문제를 이해하고 세분화하는 능력
| 호두까기 문제를 이해하는 기업
인공신경망이 잘할 수 있는 일을 찾는 기업
[Chapter 6] 미래 사회의 변화상
기업: 선택의 시간
| 제조 기업들 앞에 놓인 선택
| 인공지능 기업들을 기다리는 선택
정부: 안보와 인공지능의 관계
개인: 서서히, 하지만 변하는 세상
맺음말 혁신은 어떻게 시작되어 어디로 가는가
| 혁신의 발생과 개별 사건의 이해
| 인공지능의 시대 or 인공지능 겨울
| 부록 | 용어 설명
1 인공지능, 인공신경망, 기계학습, 엔드 투 엔드
2 인공지능 학습 기법: 역전파 방법론
3 인공지능 학습 기법: 드롭아웃
4 자료의 정확도: 16비트와 32비트
5 자료형: 정수와 부동소수점
도서명 : AI 혁명의 미래
저자/출판사 : 정인성,최홍섭,저자,글,, 이레미디어
쪽수 : 284쪽
출판일 : 2023-01-06
ISBN : 9791191328745
정가 : 18000
머리글 위기인지 기회인지는 지식에 달렸다
| 피할 수 없는 인공지능의 물결
| 두려움을 극복하기 위해서
[Chapter 1] 혁신을 향한 여정: 엔드 투 엔드를 향해
인간이 만드는 인공지능
| 인간이 짠 규칙: 규칙 기반 프로그래밍
| 규칙을 주입받은 인공지능: SVM
인간처럼 배우는 인공지능
| 인간 따라 하기: 엔드 투 엔드와 인공신경망
| 인공지능 겨울: 사람의 뇌를 따라 하는 데서 생기는 어려움
| 돌파구: 겨울 왕국에서 준비하는 봄
| 실리콘밸리에서 다가온 반도체 혁명
| 엔드 투 엔드 인공신경망의 데뷔전: ImageNet 2012
결전: IBM vs Google
| IBM: 인간이 만드는 인공지능
| Google: 인간처럼 배우는 인공지능
엔드 투 엔드의 승리
| 엔드 투 엔드의 승리가 알려 주는 교훈
| 엔드 투 엔드로 인한 세상의 변화
| 기존 방식이 적용 가능한 영역
[Chapter 2] 혁신의 결과: 현재의 인공지능 기술
인식 분야 연구의 완성
생성 분야 연구의 약진
강화학습 기술과 의사결정 분야의 가능성
초거대 언어 모델과 자연어처리
AI로 어디까지 할 수 있는가?
[Chapter 3] 인공지능을 만들고 적용하기
인공지능을 만들 때 꼭 알아야 할 것들
| 인공지능의 구성 요소
| 학습 데이터 만들기
| 데이터 증강
| 범용성과 최적화의 사이, 인공신경망 설계
| 좋은 AI의 두 가지 조건
기업의 성공적인 AI 트랜스포메이션을 위한 가이드
| AI 트랜스포메이션 프로세스와 단계별 체크 리스트
| AI 트랜스포메이션 선순환 구조 만들기
| AI 트랜스포메이션을 위한 조직 세팅
[Chapter 4] 미래 인공지능 기술 트렌드
빠르게 똑똑해지지는 못하는 AI
인공신경망 기술의 새로운 화두
| 보다 더 사람의 뇌처럼: SNN
| 사람의 기억을 어떻게 구현할 것인가: RETRO Transformer
| AGI: 일반 인공지능의 꿈은 이뤄질까?
게임 체인저인가, Nice Try인가? 인공지능 반도체들
| 딥러닝의 마중물: NVIDIA GPU
| 더욱 거대한 스케일로: WSE
| 가속기를 위한 가속기: PiM
| 소형 기기는 누가 하는가: 엣지 가속기
| 휴대 기기 속 인공지능 경쟁: NPU
| 컴퓨터를 넘어서: 뉴로모픽 칩
| 아메바 수준의 단순함: 아날로그형 인공지능 반도체
[Chapter 5] 미래 인공지능 기업
인공지능 개발 능력이 높은 기업
| 과감한 선택을 하는 기업
| 하드웨어 발전의 이해자
| 다양한 학문 분야에 발이 넓은 기업
서비스의 성공 요소를 알고 있는 기업
| 서비스의 부품으로서의 AI
| 문제를 이해하고 세분화하는 능력
| 호두까기 문제를 이해하는 기업
인공신경망이 잘할 수 있는 일을 찾는 기업
[Chapter 6] 미래 사회의 변화상
기업: 선택의 시간
| 제조 기업들 앞에 놓인 선택
| 인공지능 기업들을 기다리는 선택
정부: 안보와 인공지능의 관계
개인: 서서히, 하지만 변하는 세상
맺음말 혁신은 어떻게 시작되어 어디로 가는가
| 혁신의 발생과 개별 사건의 이해
| 인공지능의 시대 or 인공지능 겨울
| 부록 | 용어 설명
1 인공지능, 인공신경망, 기계학습, 엔드 투 엔드
2 인공지능 학습 기법: 역전파 방법론
3 인공지능 학습 기법: 드롭아웃
4 자료의 정확도: 16비트와 32비트
5 자료형: 정수와 부동소수점
댓글목록0