초보자도 쉽게 배우는 텐서플로로 구현하는 딥러닝과 강화학습 또는 벤츠가 되는 법
로즈
2025-04-14 05:40
5
0
-
- 관련링크 : https://www.kdgmall.kr3회 연결
본문
초보자도 쉽게 배우는 텐서플로로 구현하는 딥러닝과 강화학습

도서명 : 초보자도 쉽게 배우는 텐서플로로 구현하는 딥러닝과 강화학습
저자/출판사 : 잔카를로 자코네 , 레자울 카림 , 아메드 멘시, 에이콘출판
쪽수 : 396쪽
출판일 : 2017-10-30
ISBN : 9791161750682
정가 : 33000
1장. 딥러닝 시작하기
__머신 러닝 소개
____지도 학습
____비지도 학습
____강화 학습
__딥러닝이란 무엇인가?
____인간의 뇌는 어떻게 작동하는가?
____딥러닝의 역사
____적용 분야
__신경망
____생물학적 뉴런
____인공 신경 세포
__인공 신경망은 어떻게 학습하는가?
____역전파 알고리즘
____가중치 최적화
____확률적 경사 하강
__신경망 구조
____다층 퍼셉트론
____DNN 구조
____컨벌루션 뉴럴 네트워크
____제약 볼츠만 머신
__오토인코더
__순환 신경망
__딥러닝 프레임워크 비교
__요약
2장. 텐서플로 살펴보기
__일반 개요
____텐서플로 1.x의 새로운 기능은 무엇인가?
____텐서플로는 사람들이 사용하는 방식을 어떻게 변화시켰는가?
____텐서플로 설치 및 시작하기
__리눅스에서 텐서플로 설치하기
____플랫폼에 어떤 텐서플로를 설치해야 하는가?
__NVIDIA에서 GPU로 텐서플로를 실행하기 위한 필요 요건
____단계 1: NVIDIA CUDA 설치
____단계 2: NVIDIA cuDNN v5.1+ 설치
____단계 3: CUDA 컴퓨팅 기능 3.0+ 이 있는 GPU 카드
____단계 4: libcupti-dev 라이브러리 설치
____단계 5: Python(또는 Python3) 설치
____단계 6: PIP(또는 PIP3) 설치 및 업그레이드
____단계 7: 텐서플로 설치
__텐서플로 설치 방법
____pip로 텐서플로 설치하기
____virtualenv로 설치하기
__윈도우에서 텐서플로 설치하기
____소스를 이용해 설치하기
____윈도우에 설치하기
____텐서플로 설치를 테스트하기
__계산 그래프
__왜 계산 그래프가 중요한가?
____계산 그래프로 신경망 표현하기
__프로그래밍 모델
__데이터 모델
____랭크
____구조
____데이터 유형
____변수
____텐서 가져오기
____피드
__텐서보드
____텐서보드는 어떻게 작동하는가?
__단일 입력 뉴런 구현하기
__단일 입력 뉴런에 대한 소스 코드
__텐서플로 1.x로 마이그레이션
____업그레이드 스크립트를 사용하는 방법
____제안
____수작업 코드 업그레이드 방법
____변수
____요약 함수
____단순화한 수학 변형
____기타 변경 사항
__요약
3장. 순방향 신경망에 텐서플로 사용하기
__순방향 신경망 소개
____순방향 및 역전파
____가중치와 바이어스
____전이 함수
__자필 숫자의 분류
__MNIST 데이터 집합 살펴보기
__소프트맥스 분류기
____가시화
__텐서플로 모델을 저장하고 복구하는 방법
____모델 저장하기
____모델 복구하기
____소프트맥스 소스 코드
____소프트맥스 로더 소스 코드
__5층 신경망 구현
____가시화
____5층 신경망 소스 코드
__ReLU 분류기
__가시화
____ReLU 분류기 소스 코드
__드롭아웃 최적화
____가시화
____드롭아웃 최적화를 적용한 소스 코드
__요약
4장. 컨볼루션 신경망에 텐서플로 사용하기
__CNN 소개
__컨볼루션 뉴럴 네트워크 구조
____CNN 모델 - LeNet
__첫 번째 CNN 구축
____손으로 쓴 분류기의 소스 코드
____CNN으로 감정 인식하기
____감정 분류기 소스 코드
____여러분이 보유한 이미지로 모델 테스트하기
____소스 코드
__요약
5장. 텐서플로 오토인코더 최적화하기
__오토인코더 소개
__오토인코더 구현하기
____오토인코더에 대한 소스 코드
__오토인코더 견고성 개선하기
__노이즈 제거 오토인코더 구축하기
____노이즈 제거 오토인코더 소스 코드
__컨볼루션 오토인코더
____인코더
____디코더
____컨볼루션 오토인코더 소스 코드
__요약
6장. RNN 순환 신경망
__RNN 기본 개념
__RNN 실행 메커니즘
__RNN의 펼쳐진 버전
__그레이디언트 소멸 문제
__LSTM 네트워크
__RNN을 이용한 이미지 분류기
____RNN 이미지 분류 프로그램의 소스 코드
__양방향 RNN
____양방향 RNN 소스 코드
____텍스트 예측
____데이터 집합
____혼잡도
____PTB 모델
____예제 실행하기
__요약
7장. GPU 연산
__GPGPU 연산
__GPGPU 역사
__CUDA 구조
__GPU 프로그래밍 모델
__텐서플로 GPU 설정
____텐서플로 업데이트
__텐서플로 GPU 관리
____프로그래밍 예제
________GPU 계산을 위한 소스 코드
__GPU 메모리 관리
__복수 GPU 시스템에서 단일 GPU 할당
____소프트 배치로 GPU에 대한 소스 코드
____복수 GPU 사용하기
____복수 GPU 관리를 위한 소스 코드
__요약
8장. 고급 텐서플로 프로그래밍
__케라스 소개
____설치
__딥러닝 모델 만들기
__영화 평론 내용에 근거한 감정 분류
____케라스 무비 분류 프로그램의 소스 코드
__컨볼루션층을 추가하기
____컨볼루션층을 갖는 영화 분류기에 대한 소스 코드
__Pretty Tensor
____층 연결
________일반 모드
________순차 모드
________분기 및 조인
__숫자 분류기
____숫자 분류기용 소스 코드
__TFLearn
____TFLearn 설치
__타이타닉 생존 예측기
____타이타닉 분류기 소스 코드
__요약
9장. 텐서플로를 이용한 고급 멀티미디어 프로그래밍하기
__멀티미디어 분석 소개
__가변적인 객체 감지를 위한 딥러닝
____병목
____재학습 모델 사용
__가속화한 선형 대수학
____텐서플로의 주요 강점
____XLA를 통한 Just-In-Time 컴파일
________JIT 컴파일
________XLA의 존재와 장점
________XLA의 후드 작업
________여전히 실험적인 상태다
________지원 플랫폼
________보다 실험적인 자료
__텐서플로와 케라스
____케라스는 무엇인가?
____케라스의 효과
____비디오 질문 응답 시스템
________실행 불가능한 코드!
__안드로이드에서 딥러닝
____텐서플로 데모 예제
____안드로이드 시작하기
________구조 요구 사항
________사전 빌드한 APK.
________데모 실행
________안드로이디 스튜디오로 구현하기
________좀 더 시도해본다 - Bazel로 구축하기
__요약
10장. 강화 학습
__강화 학습의 기본 개념
__Q-러닝 알고리즘
__OpenAI Gym 프레임워크 소개
__frozenlake-v0 구현 문제
____frozenlake-v0 문제에 대한 소스 코드
__텐서플로를 사용한 Q-러닝
__Q 러닝 신경망 소스 코드
__요약
벤츠가 되는 법

도서명 : 벤츠가 되는 법
저자/출판사 : 신은진, 와이엠북스
쪽수 : 496쪽
출판일 : 2017-09-25
ISBN : 9791132242802
정가 : 10000
프롤로그
1. 똥차가 가면 벤츠가 온다고?
2. s시리즈도 볼트 하나부터
3. 고물차는 폐차가 답이다
4. 연구는 필수
5. 엔진을 설계한다
6. 조립은 섬세하게
7. 용접은 화력이다!
8. 시제품을 만든다
9. 반드시 점검한다
10. motivation이 필요하다
11. 외형을 디자인한다
12. 주행테스트를 한다
13. 오류를 수정한다
14. 에어백은 반드시
15. 연료는 충분히
16. 터보를 장착한다
17. 시트는 안락하게
18. 안전테스트를 준비한다
19. 점검은 확실하게
20. 외부 충격에 대비한다
21. 액티브 헤드레스트는 사고 시 운전자를 보호한다
22. 로고는 크고 눈에 띄게
23. 출시한다
에필로그
작가 후기
댓글목록0