2025 평생 무료 동영상과 함께하는 위험물기능장 필기 최근 기출문제 또는 머신 러닝 마스터 클래스
땅끝
2025-03-03 10:33
130
0
본문
2025 평생 무료 동영상과 함께하는 위험물기능장 필기 최근 기출문제

도서명 : 2025 평생 무료 동영상과 함께하는 위험물기능장 필기 최근 기출문제
저자/출판사 : 정진홍, 세진북스
쪽수 : 514쪽
출판일 : 2025-01-05
ISBN : 9791157456529
정가 : 30000
● 본서는 이론 내용 없이 기출문제로만 구성
* 2016년 ~ 2024년 기출문제 및 해설
2016년도
제59회 2016년 04월 02일 시행 제60회 2016년 07월 10일 시행
2017년도
제61회 2017년 03월 05일 시행 제62회 2017년 07월 08일 시행
2018년도
제63회 2018년 03월 31일 시행 제64회 2018년 07월 CBT 시행
2019년도
제65회 2019년 03월 CBT 시행제66회 2019년 07월 CBT 시행
2020년도
제67회 2020년 04월 CBT 시행
제68회 2020년 07월 CBT 시행
2021년도
제69회 2021년 02월 CBT 시행
제70회 2021년 07월 CBT 시행
2022년도
제71회 2022년 02월 CBT 시행
제72회 2022년 06월 CBT 시행
2023년도
제73회 2023년 02월 CBT 시행
제74회 2023년 06월 CBT 시행
2024년도
제75회 2024년 01월 26일 CBT 시행 제76회 2024년 06월 16일 CBT 시행
(전 과목 이론 강의 평생 제공)
(우수회원 인증 후 11개년 기출문제 동영상 강의 무료 평생 제공)
(우수회원 인증 후 2014년 ~ 2015년 2개년 기출문제(해설 포함) 추가 제공)
머신 러닝 마스터 클래스

도서명 : 머신 러닝 마스터 클래스
저자/출판사 : 민재식, 인사이트
쪽수 : 304쪽
출판일 : 2025-01-17
ISBN : 9788966264636
정가 : 25000
레슨 1 기계에게 상식적 판단 능력 심어주기
확률적 판단의 기본, 베이즈 정리
가장 그럴듯한 원인을 선택하는 행위, MLE
사전 정보의 등장으로 결과가 뒤집힌다, MAP
우리 일상 생활에서 활용되는 사전 정보
AI의 의사 결정을 돕는 사전 정보
맺는 말
레슨 2 확률 분포 해석하고 비교하기
엔트로피는 불확실성을 말해준다
불확실성은 곧 정보량이다
엔트로피는 정보의 가치이기도 하다
엔트로피는 결국 비용이다
확률 분포를 모르면 비용이 증가한다, 크로스 엔트로피
추가 비용을 수치화하다, KLD
엔트로피 패밀리의 무능함 1
엔트로피 패밀리의 무능함 2
가능한 대안, W 거리
너무나 원시적으로 사용되는 크로스 엔트로피
크로스 엔트로피 좀 더 잘 쓰기
맺는 말
레슨 3 날것의 숫자들을 확률 분포로
Softmax, 어울리지 않는 그 이름
왜 하필 지수 함수인가
확률 분포에 정답은 없다
맞춤형 확률 분포를 만들다
Sigmoid 함수와는 사촌 관계이다?
맺는 말
레슨 4 학습 가능 여부를 좌우하는 목표 함수
같으면서도 다른 두 목표 함수
로그 덕분에 일이 쉬워진 회귀
목표 함수에 로그를 씌우는 진짜 이유는?
학습이 나아갈 방향과 보폭, gradient
좋은 gradient, 나쁜 gradient
우리에게 이미 익숙한 log likelihood
맺는 말
레슨 5 엇나가는 학습 모델을 어떻게 제어하나
노이즈는 피할 수 없는 숙명이다
모델의 학습 과정에 적극 개입하다
이번에도 다시 한번 prior의 대활약
왜 작은 파라미터가 선호되는가
L1과 L2의 서로 다른 행보
배치 정규화의 등장, 그리고 가중치 감쇠의 위기
가중치 감쇠의 재평가
맺는 말
레슨 6 숨어 있는 변수를 찾아라, 없으면 만들어라
데이터 조작 시나리오
분포를 알면 창조는 쉽다
숨어있는 속성, 잠재 변수
섞인 성분을 분리해 내다, GMM
조인트 분포로 설명하다, VAE
분포가 아닌 함수로 설명하다, NF
단계별 과거로 현재를 설명하다, 디퓨전 모델
디퓨전이 필요한 이유
맺는 말
레슨 7 성능 수치에 현혹되지 말자
분류 모델 평가의 시작은 혼동 행렬
그들은 왜 specificity를 쓰는가
그런데 우리는 왜 precision을 쓰는가
임계치는 어디로 정해야 할까
그 모든 사정을 다 감안한 방법, AUC
클래스 불균형 상황에서의 AUC
그럼에도 AUC가 보여주지 못하는 것
검출 모델의 성능 지표, AP
정답이 없어도 채점은 가능하다
생성 이미지에 대한 반응을 점수화하다, IS
생성 이미지의 특징 분포를 점수화하다, FID
맺는 말
레슨 8 AI가 사는 그 세계, 고차원 공간 속으로
한 가지 의문에 대한 추적
고차원 공간에서 발생하는 신기한 현상들
고차원 가우시안 분포는 특이하게 생겼다?
고차원에서는 확률의 배신마저 일어난다
고차원에서는 안 해도 될 걱정들
차원의 저주인가 차원의 축복인가
맺는 말
레슨 9 자만에 빠진 AI, 그래서 미덥지 못한 AI
성능은 좋은데 믿음이 안 간다
자만은 AI 스스로에게도 도움이 안 된다
무엇이 그들을 자만하게 만들었나
자만에 빠지는 시점
자만에 빠지는 과정
겸손한 AI로 거듭나기
확신에 찬 오류, AI 할루시네이션
맺는 말
댓글목록0